Qi Coupling Factor

Eberhard Waffenschmidt, Philips Research

Depending on the distance between the transmit and receive coils, only a fraction of the magnetic flux generated by the transmitter coil penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled. The grade of coupling is expressed by the coupling factor k.

The coupling factor is a value between 0 and 1. 1 expresses perfect coupling, i.e. all flux generated penetrates the receiver coil. 0 expresses a system, where transmitter and receiver coils are independent of each other.
The coupling factor is determined by the distance between the inductors and their relative size. It is further determined by the shape of the coils and the angle between them. If coils are axially aligned, a displacement causes a decrease of k. Figure 6 shows this effect for an ideal arrangement of planar coils with 30 mm diameters. It shows the measured and calculated coupling factor for parallel coils at different misalignment distances at the horizontal axis. Coupling factors in the range of 0.3 to 0.6 are typical. Note that a negative coupling factor means that the receiver captures the magnetic flux “from behind.
The definition of the coupling factor is given by:

It results from the general equation system for coupled inductors:

where U1 and U2 are the voltages applied to the coils, I1 and I2 are the currents in the coils, L1 and L2 are the self inductances, L12 is the coupling inductance and ω = 2πf is the circular frequency.
The coupling factor can be measured at an existing system as relative open loop voltage u:

If the two coils have the same inductance value, the measured open loop voltage u equals k.



 

From the Qi Blog

Starbucks & FluxPort Brew Up Qi Wireless Charging for Customers in Germany

At the WPC’s wireless power industry trade show this week in Munich, WPC member FluxPort announced that it has become Starbucks Germany’s wireless charging partner.
Read more

Join the wireless power LinkedIn chat

The free live Q&A will feature IEEE’ PELS, TI wireless power experts Janice Escobar and Dick Stacey and WPC expert, John Perzow.
Read more

The vision for a higher power – forget about power cables at the next WPC power level

In September 2014 BOSCH developed a proprietary wireless charging system for its Power Tools. This system is capable of transferring 65 Watts of power received through electromagnetic induction – at industry-leading efficiency levels.
Read more