Measuring Wireless Charging Efficiency In the Real World
Or...

Why a Wireless Charging Spec needs to Support Close & Loosely-Coupled Approaches
Industry-Wide Problem:

There is no Standardized test methodology for specifying power efficiency of a wireless charging system
• Who cares about efficiency?
 • IKEA
 • McDonald’s
 • EPA/China/EU/Gov’t agencies
 • Auto makers
 • Consumers
 • Who doesn’t care?
1. DC out A: Not a valid representation of real-world application
2. DC out B: A good proxy, if the right load range is selected
3. DC out C: The real-world view, also allows complete energy analysis
2 Architectures

Resonant

Inductive

Rezence perimeter coil

Qi planar coil
Architecture Comparison

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Representative Standards</th>
<th>Operating Frequency</th>
<th>Antenna Structure</th>
<th>Benefits¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant AKA: Loosely Coupled</td>
<td>• Rezence</td>
<td>• 6.78 MHz</td>
<td>Perimeter</td>
<td>• Extended Z-distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Multi-device</td>
</tr>
<tr>
<td>Inductive AKA: Closely Coupled</td>
<td>• Qi</td>
<td>• 110 ～ 205 kHz</td>
<td>Planar</td>
<td>• Highly efficient</td>
</tr>
<tr>
<td></td>
<td>• PMA</td>
<td>• 200 ～ 300 kHz</td>
<td></td>
<td>• Low cost</td>
</tr>
</tbody>
</table>

Question: Why not use resonant architecture for all applications?
Answer: Efficiency and cost tradeoffs make it inappropriate to do so.

1. There are no Rezence products in the market, so benefits are as per the promotional materials from the A4WP
Power for a Wireless World

Use-Case Examples

Resonant: Under-surface mount

Inductive: Automotive

Inductive: Charging Stand

Inductive: Charging Plate
Efficiency should be calculated as spatial average:

“Total joules into the battery divided by total joules into the transmitter averaged over the charge area/volume for a charge cycle”
Efficiency Measurement

Taken at the optimal spatial position and load power (5W, 4.2V @ 1.2A)
1. Loosely-coupled, high-frequency wireless charger
 – EPC-9112
 – Similar to A4WP/Rezence Class 3
 – 6.78 MHz operation

2. Closely-coupled, low-frequency wireless charger
 – BQ500212
 – Qi spec 1.1.2, Type A11
 – 110 ~ 210 kHz
Model determines load resistance, voltage and current test conditions
Energy required for typical (90%) charge-cycle of a 2100 mA hr. battery
High-Frequency Wireless Charger

Efficiency Experiment

Efficient Power Conversion Evaluation Kit EPC9112
- 6.78 MHz operation
- GaN switches
- ZVS, Class D amplifier
- NuCurrent antenna system compliant to Rezence class-3

GaN Driver
5Vout
VDD
8V – 36V
Gate Drive & Control
7.5V

LDO

Synchronous buck pre-regulator

Zero Voltage Switching Class D Amplifier

R_load

EPC Device Board
(Receiver)
Efficiency vs. position for 10 ohm load
“Open-Loop”
2 Configurations

Resistive Load Configuration

Battery Charging Configuration

EPC Device Board (Receiver)

Synchronous DC-DC Buck Regulator

Battery Charger

0V - >40V

5.0V

0V - 28V
Low-Frequency Wireless Charger Efficiency Experiment

Texas Instruments Evaluation Kit bq500212
- 100 ~200 kHz operation
- CMOS switches
- Würth antenna compliant to Qi A11
Efficiency vs. position for 5 ohm load Full System
Qi is the most efficient system by design.

Efficiency is impacted by:
- Switching frequency
- Antenna design
- Spatial position / Coil-coupling coefficient
- Maximum Power-Point Transfer
Battery Model: 2100 mA hr.

Total energy over 5% to 95% charge cycle: 27 k Joules
Power for a Wireless World

Real-World Efficiency

Total Energy Efficiency

Qi = 59.4%
Rezence = 39.6%

65.7 kJ
η = 39.6%

43.8 kJ
η = 59.4%

27 kJ
η = 100%
Conclusions

• Real-world conditions must be used
• Efficiency should be defined as a spatial average based on real-world use
 – “Total joules into the battery divided by total joules into the transmitter over one charge cycle”
• Qi (low-frequency system) total charge efficiency ~60%
• High-frequency total charge efficiency ~40%
• A wireless charging standard that meets all market needs and use-cases must be dual-mode (resonant & inductive)
Power for a Wireless World

Thank You